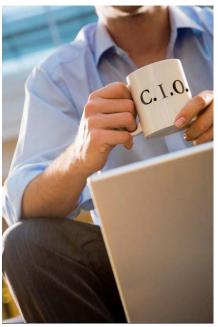
HP Integrity NonStop Hardware and Software VNUG, May 2010

Mittal Parekh WW Product Manager, Multiple Product Lines NonStop Enterprise Division

Agenda

- 1. HP Integrity NonStop Multi-core Hardware
- 2. HP Integrity NonStop Multi-core Software
- 3. Volume Level Encryption
- 4. Summary


We heard you.....and you.....

Find ways to be more efficient, so that even with less money you can still deliver the strategy

Now is the time to improve the efficiency of the IT system itself

..DO MORE WITH LESS..

We're holding off on replacements, but spending wisely where we're investing for the future...

Costs are under pressure but we must remain competitive

NonStop customers asked for

Del	liver	24 x	7 a	vail	ahi	litv

- Minimize both planned and unplanned outages
- Drive recovery time to near-zero
- End-to-end availability
- Instill a culture of 24 x 7 support

Handle massive scalability

- Handle the largest workloads
- Scale without planned outage
- Scalability of multiple dimensions processors, database, and software

Drive to standards-based computing

- Lower cost hardware by leveraging "volume economics"
- Modern software interfaces
- Service Oriented Architectures

Provide longevity of support

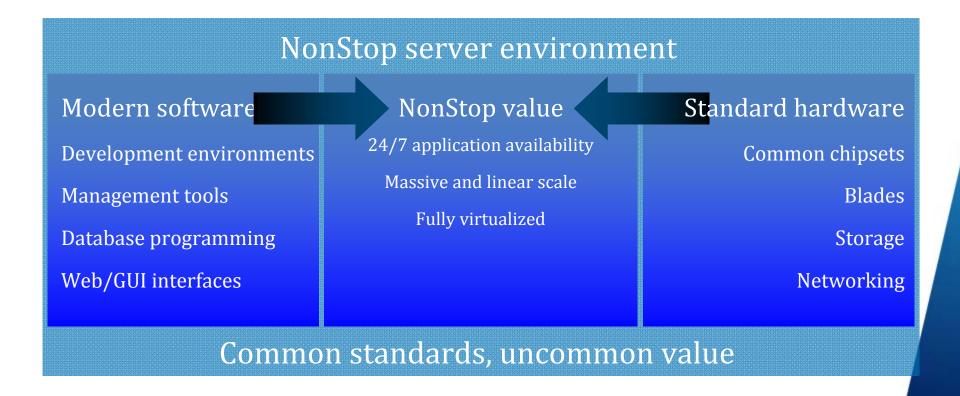
- Provide product support and upgrade capability over decades
- Maximize continuity and consistency

"Give us bigger, better, faster...cheaper NonStop platform"

NonStop: Investing for the future

Modernize

Standardize



Customers tell us they want...

Modern applications
built using modern tools
running on standard platforms
with 24/7 reliability

The new NonStop... modern, standard, and 24/7

NonStop and HP's Converged Infrastructure

Modern software

Development environments
Management tools
Database programming
Web/GUI interfaces

NonStop value

Standard hardware

Common chipsets
Blades
Storage
Networking

Virtualized • Resilient • Orchestrated • Optimized • Modular

HP Integrity NonStop BladeSystem

First-ever 24/7 mission critical computing system built with bladed modularity and standards

Double the performance
Half the footprint
100% NonStop

Half the footprint... Double the performance

Integrity NonStop

Integrity NonStop BladeSystem

8 CPUs/performance = 1x

8 CPUs/performance = 2x

Driving efficiency via:

- Multi-core blades
- SAS storage
- Standard I/O
- Integrated ServerNet
- Integrated management

Delivering:

Higher performance

Higher density

Lower cost

NS2000

The new entry-level Platform

- NSMA/J-series RVU only
- Intel's Itanium Dual-core Montvale processor
- Support new I/O Infrastructure
- Rack-mount form-factor
- Target markets
 - -Development, test platform for NB50000c
 - -Small stand-alone applications
 - –Emerging markets

The NonStop standardization journey

An Overview

NonStop S-series

A Proprietary Design with

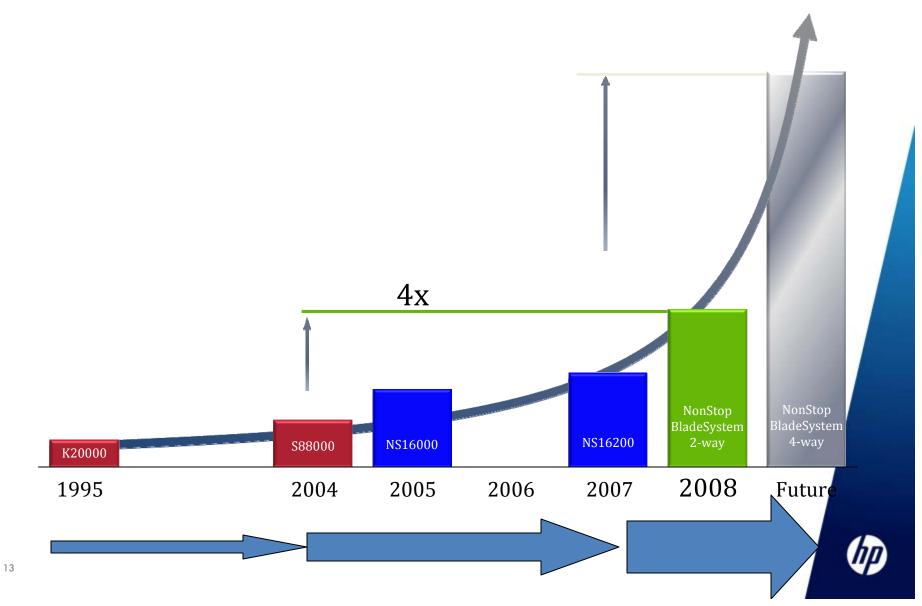
- Custom Rack
- •Custom Power & Cooling
- •Custom proprietary CPU with internally designed components
- •Custom memory
- •Custom IO and interconnect
- Non-Standard Disks
- ServerNet switches

<u>Integrity NonStop</u>

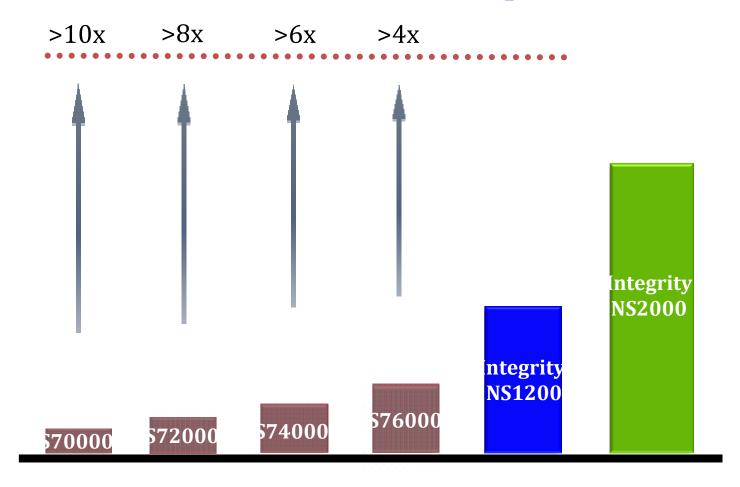
Moving to Standards with

- Standard HP Rack
- Standard Power & Cooling
- •Standard BCS Server with modifications for FT
- •Standard DIMMs
- •Custom IO and Interconnect
- Off the Shelf Disks
- ServerNet switches

Integrity NonStop BladeSystem


Even More Standardization

- •Standard ISS Chassis and Rack
- Standard Power & Cooling
- •Standard Blade with unique interconnect mezzanine card
- Standard DIMMs
- Standard IO
- Off the Shelf Disks
- Only NonStop-unique HW is ServerNet



The NonStop standardization journey

Performance with RAS

The NonStop standardization journey Modern and Affordable NonStop

100% NonStop

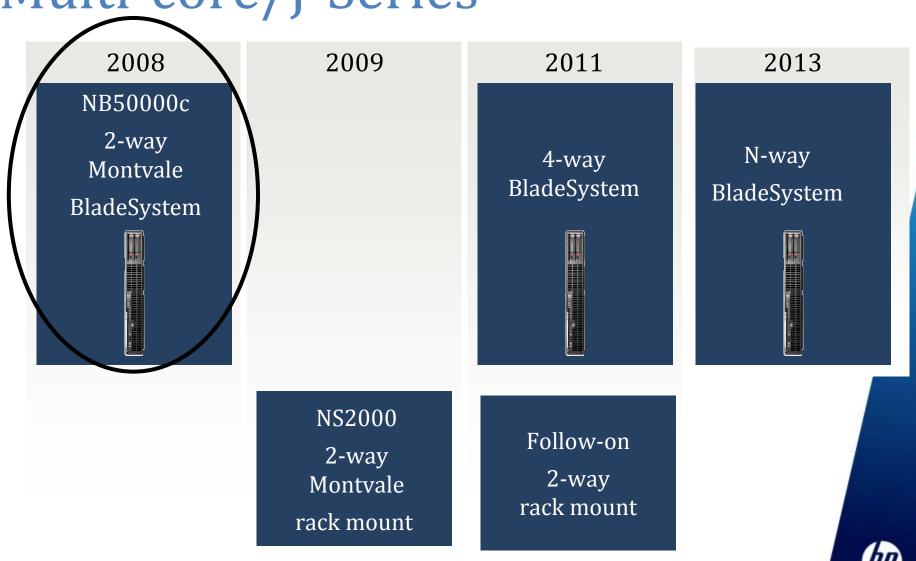
Always available

- 24/7 continuous availability
- Fault-tolerant NonStop OS
- Fully-integrated fault-tolerant software stack

Massively scalable

- Scale-up in addition to Scale-out
- Linear scalability
- High-speed ServerNet clustering

Complete investment protection


- 100% software compatible
- Seamless clustering with prior systems
- Supports existing I/O infrastructure

HP Integrity NonStop roadmap

Multi-core/J-Series

NonStop BladeSystem

System configuration overview

Blade chassis

- c-Class enclosure
- ServerNet double-wide switch modules
- Ethernet single-wide switch modules (maintenance connections)

Logical processors/blades

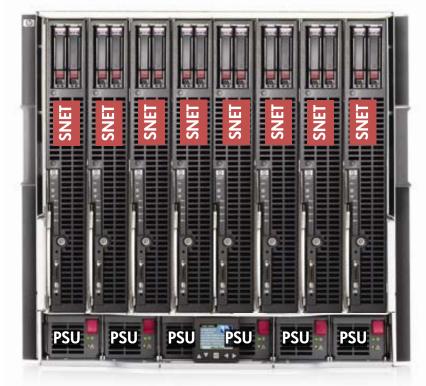
- Two to eight blades per chassis, each with:
 - One 1.66 GHz dual core Montvale processor (one logical CPU)
 - ServerNet Mezzanine card
 - 8, 16, 24, 32, 48 GB main memory per logical CPU

Input/output

- Networking CLIM
 - Five GBit Ethernet ports (five copper or three copper/two fibre)
- Storage CLIM
 - 2 SAS HBA default; 2 additional: SAS/FC HBA choices
 - SAS enclosure: Hosts up to 25 disks
 SAS 146 GB @ 15K drives, 300 GB @ 10K drives
 - XP connection option; FC tape option
- IOAME is supported, S-series I/O for traditional TDM based SS7 only

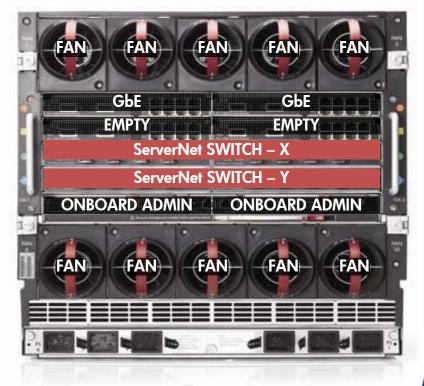
NonStop BladeSystem enclosure

- NonStop ServerNet switches
- The NONSTOP midplane
- Pre-integrated, connected
- Pre-populated with 10 fans and six power supplies (2250 watts each)
- Facilitates power and cooling for all the server blades
- Drastic reduction in cabling
- Two varieties based on power type
 - North America/Japan
 - International
- One enclosure max per 42U rack



10U high enclosure holds up to eight logical processors

NonStop BladeSystem BL50000c configuration — 8 processor


Server blades

Front

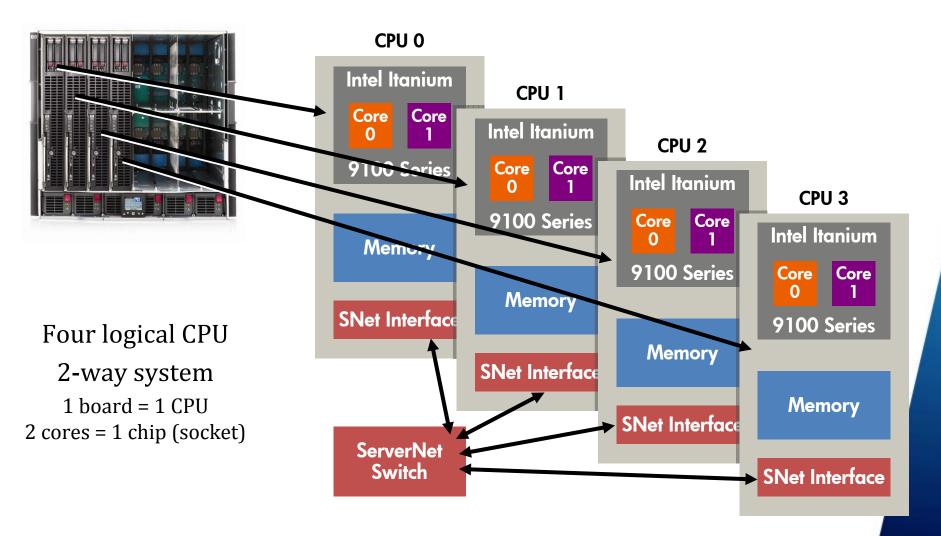
NonStop value add

Switch modules



Rear

Why NonStop deploys all 10 fans?


Power versus CFM

CFM – Cubic Feet per minute

More fans, fans required to spin slower to move the same volume of air, so each fan uses less power. Eight fans are almost always more power-efficient than four fans. As the air flow rate increases, ten fans are even more efficient (Figure 8). Slower spinning fans also create less noise.

NonStop BladeSystem- logical view

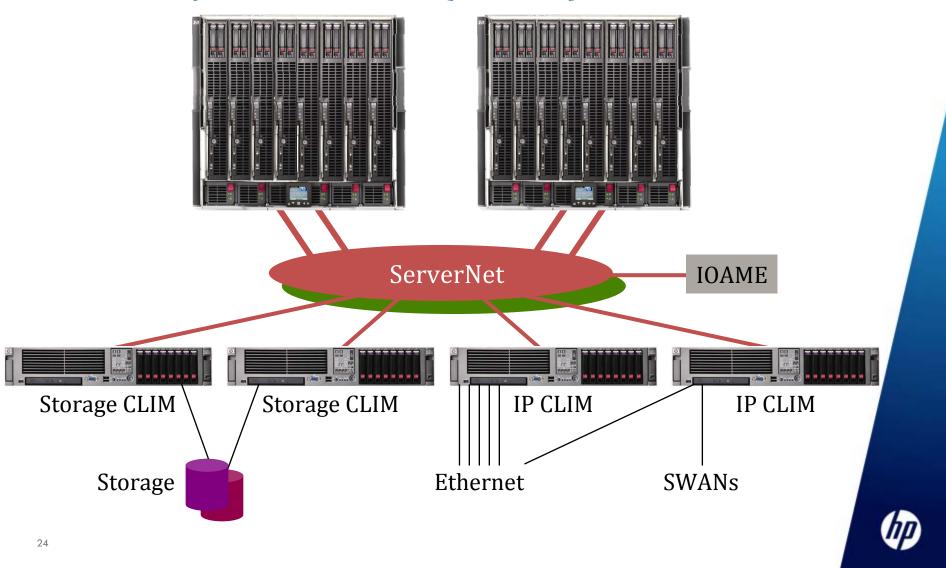
Integrity NonStop BladeSystem is MPP, not SMP

NonStop server blade

- Leverages Integrity server blade two socket full-height server blade featuring the latest Intel[®] Itanium[®] 9100 series dual-core processors
- Includes NonStop ServerNet controller
- Includes 1.66 GHz, dual-core Itanium 9100 series processor
- Offered in 8, 16, 24, 32, or 48 GB memory configurations (bundled)
 - Memory upgrades offered in multiples of 8 GB (e.g., two 4 GB DIMMs)
- Shared memory within a logical processor

New I/O infrastructure

- Three Cluster IO Module (CLIM) products
 - IP CLIM for networking protocols and Ethernet connectivity
 - Storage CLIM for attaching
 Serial Attached SCSI (SAS) disks,
 Storage XP Array family, and
 fibre channel tape
 - Telco CLIM for SS7 over IP and other
- Can co-exist with existing I/O Infra such as
 - IOAME
 - SS7 over T1/E1 via S-series I/O



NonStop BladeSystem I/O infrastructure

Cluster I/O Module (CLIM)

CLIM

Overview

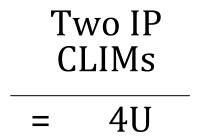
- Industry standard server running Debian Linux
 - Features ServerNet controller
 - Uses NonStop enhanced Linux to transfer data
 - Does <u>not</u> allow any customer code or applications
 - Linux "personality" is hidden
 - Fully integrated with NonStop manageability subsystems
- 2U high rack-mount server
- Makes innovation faster and easier
- Improves TCO

IP CLIM

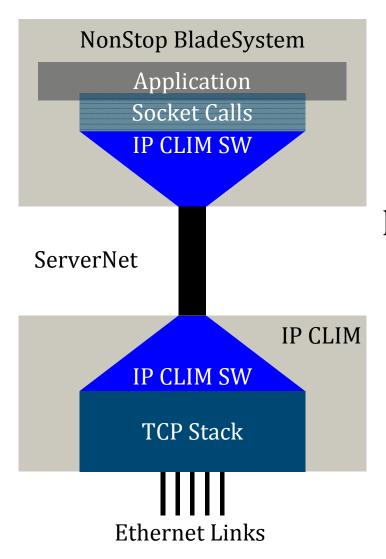
- New NonStop Networking Subsystem can replace IOAME and G4SA
- Supports
 - Gigabit Ethernet connectivity: Copper/Fibre
 ports
 IOAME does not and will not offer IPSec
 - IPSec
 - TCP/IP v4
 - TCP/IP v6
 - SCTP (Telco streaming protocol)
- Offloads some of TCP/IP load from NonStop CPU to CLIM CPU

Next generation of NonStop Networking

- S-series I/O based
 - E4SA (10Mb/s)
 - FESA(100Mb/s)
 - GESA (1Gb/s)ServerNet I and ServerNet II
- IOAME based
 - FCSA (100Mb/1Gb/s)ServerNet III
- IP CLIM
 - Gigabit Ethernet
 - ServerNet III
 - Offloading of TCP/IP, IPSec, SCTP



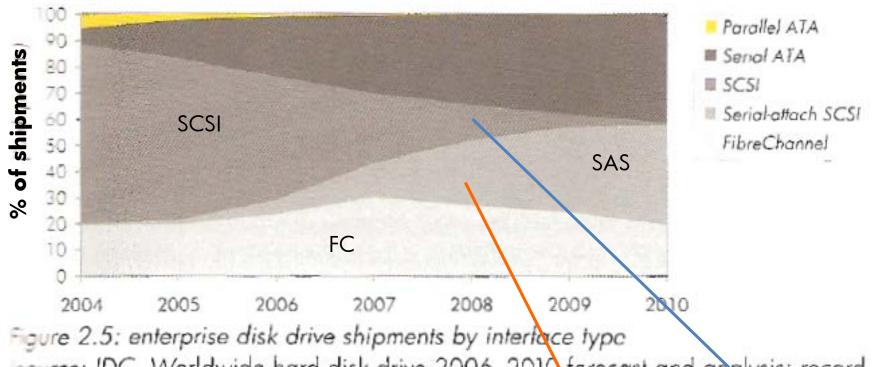
IP CLIM footprint comparison


IOAME
+Two I/O Switches
+ Two G4SAs
= 11U

IP CLIM stack

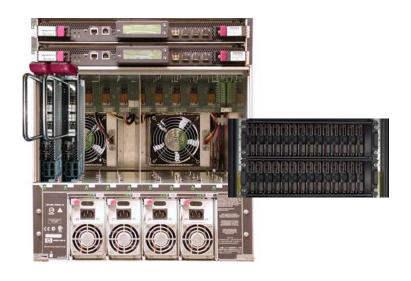
IP CLIM Sotware relieves
NonStop BladeSystem of
TCP processing while
requiring
no application changes

Storage CLIM


- New NonStop Storage Subsystem
 - Co-exists with/Replaces the combo
 - IOAME / FCSA

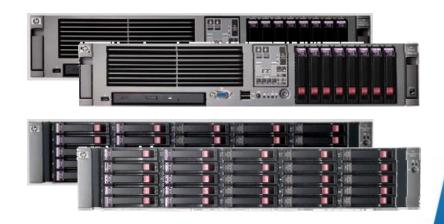
- Runs on same industry standard servers as IP CLIM
 - Based on a HP ProLiant server with PCIe cards for ServerNet and IO
 - Replaces function provided by IOAME/VIO and FCSA
- Supports SAS disks, FC tapes, XP Array, VTS
- CPUs can boot from either SAS disks (via Storage CLIM) or FC disks (via IOAME)
- Advanced Caching technology on SAS storage
- Integrated Volume Level Encryption

Why choose SAS?


isource: IDC, Worldwide hard disk drive 2006–2010 forecast and analysis: recordbreaking years may lie ahead, May 2006, IDC report #201478)

SAS is increasing and SCSI is tapering

HP white paper on SAS over SCSI http://h20000.www2.hp.com/bc/docs/support/SupportManual/c00302340/c00302340.pdf

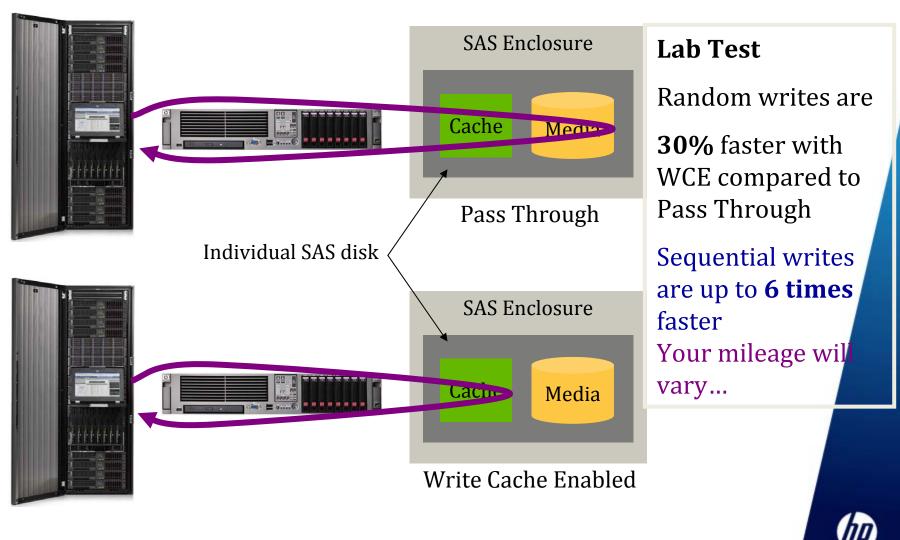


Storage CLIM footprint comparison

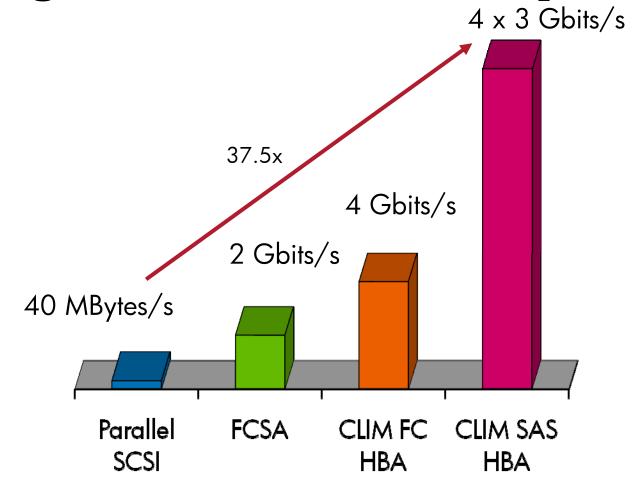
IOAME

- +Two I/O Switches
- + Two FCSAs
- + Two FCDMs
- = 28 disks/17U

Two Storage CLIMs


+ Two MSA70s

50 disks/8U



Storage CLIM with write cache enable

Next generation of NonStop storage

Each SAS HBA has 1 SAS port. Each SAS port has 4 physical links. Each link is 3 Gb/s
Each FC HBA has 2 FC ports. Each FC port has one FC connector. Each FC connector is 4 Gb/s
Each FCSA has 2 FC ports. Each FC port has one FC connector. Each FC connector is 2 Gb/s

Telco CLIM

- New NonStop Networking Subsystem that delivers M3UA (SS7 over IP) and SIP (Session Initiation Protocol)
- Offers 5 physical ports per CLIM with up to 16 associations per port allows 80 configurable links per controller
- High Performance: 32K MSU/sec per CLIM
 - Approximately ~25X performance of M3UA over SS7TE3
- Supports SCTP Multihoming to other ports on the CLIM

ServerNet backbone comparison

NS-Series Rack Mount System

Processor Switch Y ServerNet

Processor Switch X ServerNet P-Switch $3U \times 2 = 6U$

One type of P-Switch

Total of 24 I/O links per fabric

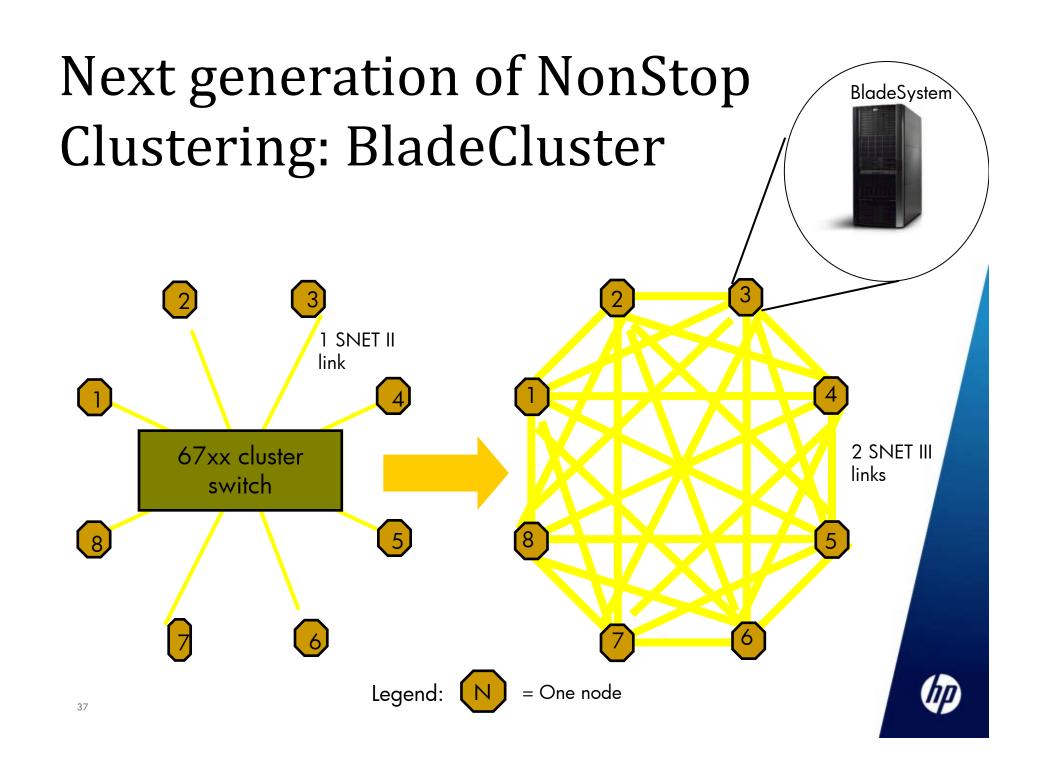
One P-Switch per Fabric per system (total of two P-Switches per system)

NonStop BladeSystem

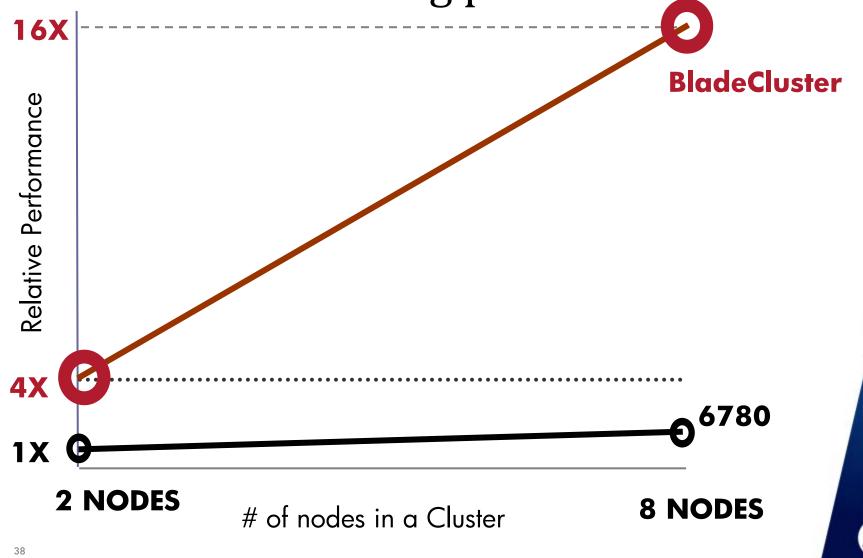
No additional rack height consumed

ServerNet switches are embedded inside c-Class enclosure (at the back)

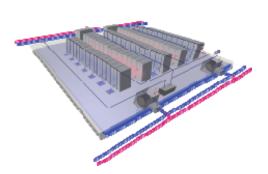
Two types of ServerNet Switches


- 1. Std I/O: Total of 12 I/O links per fabric
- 2. High I/O: Total of 24 I/O links per fabric

One ServerNet Switch per fabric per c-Class enclosure (total of two ServerNet Switches per c-Class enclosure)


16p system = two c-class enclosure = four ServerNet Switch

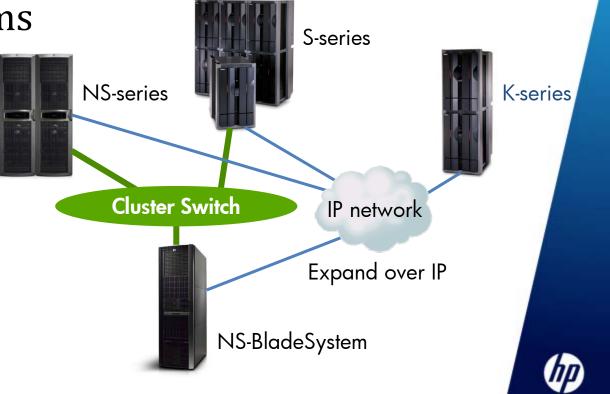
ServerNet Switches are FRUs



Next Generation of Clustering: BladeCluster Breaking performance barrier

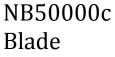
BladeSystem characteristics

- Dynamic Smart Cooling
 - Easy to retrofit or spec for new construction applications
 - Reduces cooling energy costs by 25-40%
 - Increases available cooling capacity for additional IT loads
- Reduction in power consumed per transaction from 16000 DMR to BladeSystem
- Dynamic Power Savings
 - Fans: All ON
 - Power supplies N+N


"Dynamic Smart Cooling is the most remarkable development for data center critical support systems."

Peter Gross
CEO and CTO
EYP Mission Critical Facilities Inc.

Migration to NonStop BladeSystem Complete investment protection


- 100% software compatible
- Seamless clustering with prior systems
- Supports existin infrastructure

Ease of upgrade

NonStop BladeSystem

4-way Blade

No Hardware change anywhere else

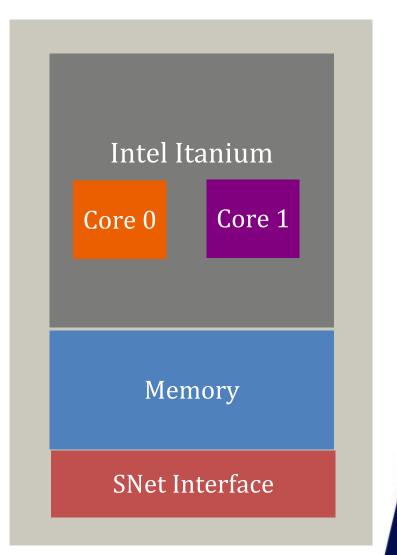
HP Integrity NonStop Multi-core Software

NonStop software investments In a nutshell

- Support industry standard technologies for application development
- Differentiate these standard applications by deploying them into the most scalable and available platform infrastructure (without change)
- Make this infrastructure easily accessible, open, highly secure, and simple to manage

Common standards, uncommon advantages
The same application runs better on NonStop

NonStop Operating System


NonStop Multicore Architecture(NSMA)

- IPU "Instruction Processing Unit", a core
- Monarch (IPU) the initial IPU upon power on (Intel calls it the boot processor)
- CPU logical processor, a set of cores sharing the same memory. The traditional NS Logical CPU extended to be a multiprocessor
 - One X and Y SNet interface per CPU
 - All IPUs in CPU share same memory map (except small per-IPU anchor area for low-level software)
- n-Way traditional indication of IPUs in a multiprocessor: 4way means 4 IPUs per CPU
- Process Scheduler: the new NSK subsystem that distributes and redistributes processes to IPUs

NonStop Operating System

NonStop Multicore Architecture(NSMA)

- •IPUs (individual cores) share...
 - NonStop OS system image
 - Memory (e.g. system globals)
 - Locks and synchronization
- •IPUs have own...
 - •IPU-specific data area (128Kb)
 - •Register set
 - Pipeline
 - Data and instruction caches
 - Ready list of processes

Where are NSMA IPUs user visible

- IPUs are system resources and just make more CPU cycles available
- No knobs or levers
- Only a few places where individual IPUs are externalized
 - Measure's CPU entity shows IPU level busy/idle
 - PEEK shows the number of IPUs in a CPU
 - PROCESSOR_GETINFOLIST_ has new attributes on the number of IPUs in a given CPU
 - Multiprocessor CPU model numbers are distinct from uniprocessor model numbers, they denote the number of IPUs in the CPU

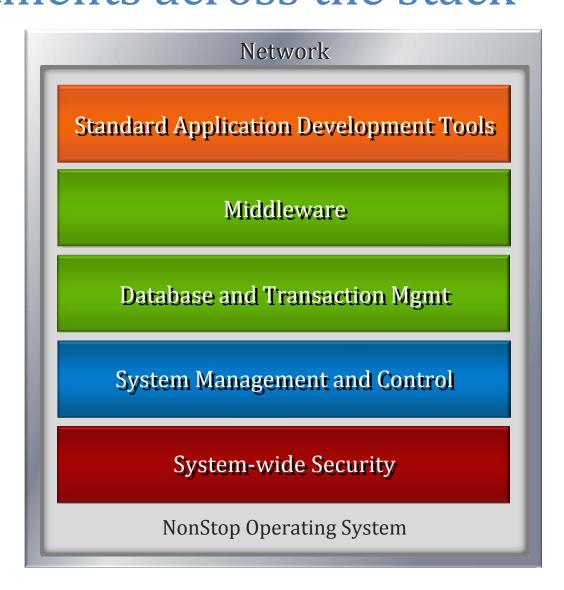
NSMA Attributes shared across IPUs

- Main Memory
- Mapping of Region 7 (upper part of the system address space including SG)
- Software Synchronizers
 - MUTEX
 - NSK Locks
- Software Global Data Structures
- Application's Shared Data Segments

NSMA Attributes per IPU

- Per IPU Area (128KB)
 - Carved out of SPAD
- Ready List
 - The Process Scheduler rearranges the lists to balance the CPU
- CPCB / CMTCB
 - Note that CPCB is not in SG: there is more than one "current" process for the CPU.
- Live Register Set
- Pipeline
- Data and Instruction Cache (Levels 1, 2, and 3)

NonStop software investments We are with you... all the way



NonStop J-series Software Investments across the stack

NonStop Operating System Infrastructure

- Scheduler, Locks and Synchronization
- 64-bit address space for OSS user processes FUTURE
 - Think Terabyte of virtual address space
 - Think In-memory database
- OSS file open per CPU, disk file open per CPU
- OSS open sockets per CPU
- Improved concurrency for Pthreads-based application
 - OSS System I/O calls to regular files are threadaware (i.e. do not block the process)
- Guardian Binary Semaphores per process
 - Increased from 64 to 24K
- ... And many more such innovations/developments..

Operating system infrastructure – plans

Adherence to industry standards, preparing for Quad-Core

February 2009

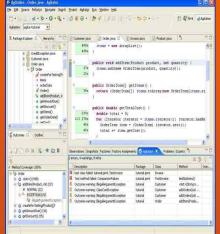
 Guardian Binary Semaphore – Limits Relief

Increase the number of binary semaphores per process from 64 to 24K

May 2009

- OSS File Open Limits Relief
 - Increase OSS file opens (per CPU including sockets, terminals, disk, ...) from 12K to 64K
 - Increase OSS disk file opens (per CPU) from 12K to 48K
 - Increase OSS open sockets (per CPU) from 4K to 16k

2H 2010


- Standard Library Support for Non-blocking IO
 - Non-blocking IO for threaded applications using standard C libraries
- System Limits Relief
 - Increase OSS PIDs (per 16P system) to 128K
 - Increase number of Guardian processes to 10K
 - Increase OSS file opens (per CPU) to 128K
 - Increase OSS disk file opens (per CPU) to 96K
 - Increase OSS open sockets (per CPU) to 32K

NonStop Software

Application development

Java Support

Support latest Java releases Support latest Tomcat releases Open-source frameworks for ease of appl development

Application Development

Increase developer productivity Make apps easier to port New optimization and debugging capabilities

NonStop Application Development Integrated Development Environment

NSDEE - NonStop Dev Env for Eclipse

- Integrated Debugging
- Improved NonStop connectivity
 - (Not just project files but others too)
- Launch programs on NonStop
- Remote build error correction
 - (wherever compile error is; file is presented to you in IDE)
- Improved Eclipse integration
 - (Eclipse update manager)

NonStop IDEs Quick Comparison

	ETK (Visual Studio)	EPE (Eclipse)	NSDEE (Eclipse)	
Languages	C/C++ Java COBOL pTAL	C/C++ Java COBOL pTAL	C/C++ Java COBOL pTAL	
Local build	Yes	Yes	Yes	
NonStop build	No	Yes	Yes	
NonStop launcher	No	No	Yes	
Integrated debugging	No	No	Yes (optional)	

Visual Inspect: 3DES Encryption for Login credentials

2010

SSH

Telnet / FTP

ETK: Support for Visual Studio 2008

NSDEE: Successor to EPE

Develop for NonStop using state of the art tools without knowing about the target platform... more or less

Telnet / FTP

Telnet / FTP

Connectivity

Standards-based app development with Java Java platform with open-source frameworks

Apache MyFaces

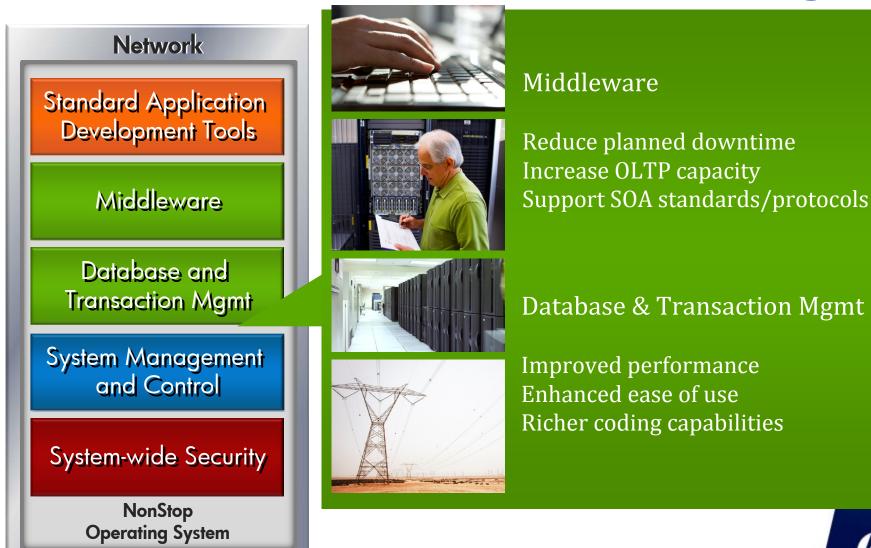
Component based web UI framework

Apache Axis2

Web services framework

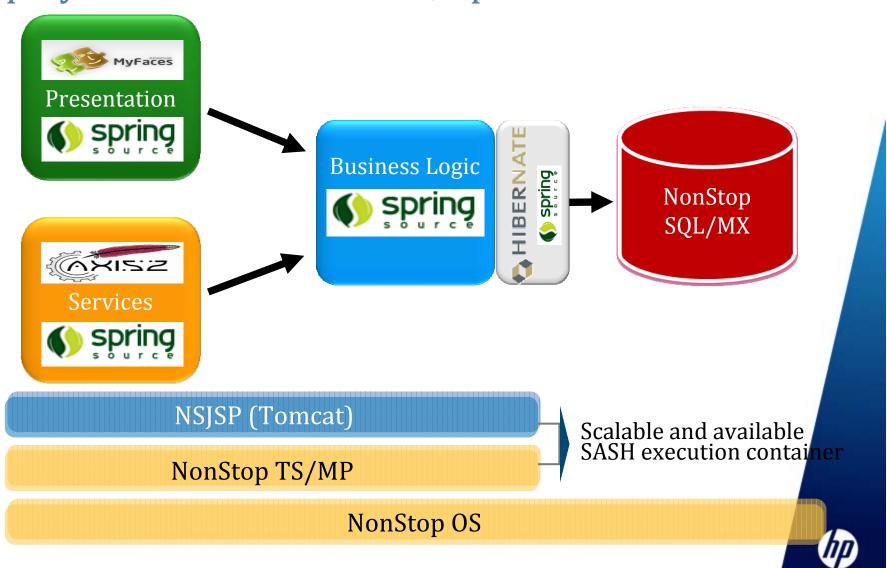
Spring

Framework for developing apps using POJO components

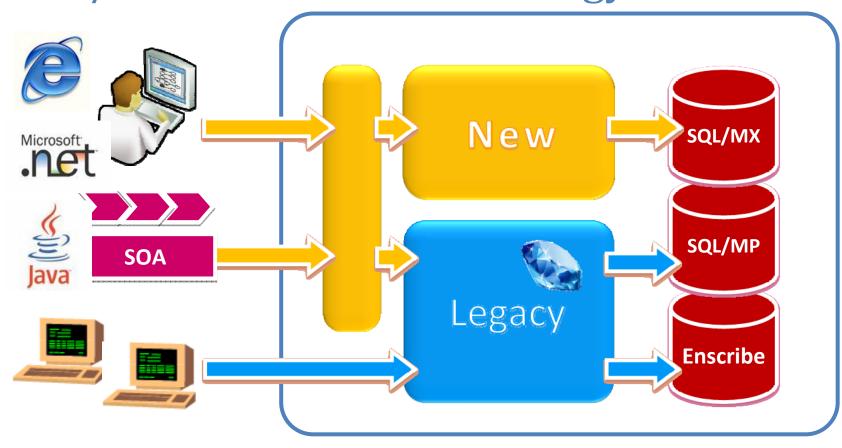

Hibernate

Object Relational Mapping framework

Integrated and tested by NonStop development End user customer support by HP Global Support


NonStop Software

Middleware, Database & Transaction Mgmt



Platform for enterprise Java development

Deploy on standard Tomcat, optimized for scale

Standards-based application integration SOA/Web-Services technology

SOA enables legacy apps to retain their legacy interfaces while providing new ones

NonStop provides 2 Web Service stacks

iTP WebServer

NonStop SOAP

NonStop TS/MP

NonStop OS

NonStop SOAP

- C-based
- No coding
- Included in J-series OS

iTP WebServer

Apache Axis2

NSJSP (Tomcat)

NonStop TS/MP

NonStop OS

Apache Axis2

- •Java-based
- •Some coding
- •Open source, free

NonStop Software in a nutshell

Modern environment based on NonStop fundamentals

Develop Application programming models	ECLIPSE	Open Source Java Frameworks Apache Tomcat Certified Java SE Platform (JDK and JRE) SOA Infrastructure (SOAP, XML, HTTP, WSDL)					
Deploy Application infrastructure	NonStop TS/MP NonStop OS						
Differentiate		twork ccess	SOA infrastructu re	Open source Java frameworks	Business logic	Database	
Transparent Scalability		√	✓	✓	✓	✓	
Transparent Fault Tolerance		✓	√	√	√	√	

Pelivering Uncommon advantages by leveraging Common Standards

THANK YOU

